Эту статью нужно срочно переписать! Вы можете помочь, исправив и дополнив еë: | |
|
Тип | |
---|---|
Действует ли гравитация | |
Прозрачность | |
Светимость | |
Взрывоустойчивость | |
Прочность | |
Инструмент | |
Возобновляемый | |
Складываемый | |
Воспламеняемый | |
Первое появление | |
Примечания При разрушении блока киркой выпадает генератор. |
Ядерный реактор — самый мощный, дорогостоящий и опасный генератор энергии, добавляемый модификацией IndustrialCraft2. Для своей работы требует IndustrialCraft 2/Топливный стержень (Уран) или IndustrialCraft 2/Топливный стержень (MOX) и сигнал красного камня.
Ингредиенты | Процесс |
---|---|
Реакторная камера + Улучшенная электросхема + Плотная свинцовая пластина + Генератор |
Рецепт оригинальной IndustrialCraft 2 |
---|
Ингредиенты | Процесс |
---|---|
Реакторная камера + Улучшенная электросхема + Генератор |
Рецепт до версии 1.106 |
---|
Ингредиенты | Процесс |
---|---|
Реакторная камера + Генератор + Улучшенная электросхема + Композит |
Активная зона — то пространство, где происходит работа и обслуживание. Вначале она состоит из 18 клеток (3x6). При каждом добавлении реакторной камеры впритык к ядерному реактору активная зона увеличивается на 6 клеток (1 столбец). Таким образом, максимальная активная зона состоит из 54 клеток (9x6).
Рабочие тела — предметы, помещаемые в активную зону ядерного реактора и влияющие на его работу. До версии 1.106 их было не так много, примерно 5 предметов. Но после обновления строить ядерный реактор стало значительно интересней, хотя и сложней.
До версии 1.106 |
---|
Охлаждающие элементы:
|
Топливный стержень (Уран) — основной источник энергии в ядерном реакторе. Причем имеются три вида: обычный ТВЭЛ, спаренный топливный стержень (Уран) и счетверённый топливный стержень (Уран).
Вспомогательные элементы:
Ядерный реактор начинает работать, как только в него помещён хотя бы один урановый ТВЭЛ и получен положительный сигнал красной пыли. При этом работу реактора можно приостановить, выключив подведённую к нему красную пыль. В выключенном состоянии ядерный реактор перестаёт вырабатывать энергию, но помещённые в активную зону охладительные элементы продолжают работать. Во время работы ядерный реактор нагревается, и в случае, если его температура достигнет критической, он взорвётся.
Каждый одиночный топливный стержень (Уран) выделяет тепло и 100 еЭ каждую секунду. Количество выделяемого тепла и энергии зависит от того, сколько активных элементов находится в смежных ячейках. К активным элементам относятся: топливный стержень (Уран), спареный ТВЭЛ, счетвернный ТВЭЛ, отражатель нейтронов, утолщённый отражатель нейтронов. При этом не важно какой именно из элементов, важно только количество таких «соседей». Выделяемое тепло распределяется равномерно по тем смежным элементам, которые могут быть нагреты (такие, например, как теплоотвод, теплообменник, конденсатор, но не компонентный теплоотвод). Если таких нет, то всё выделяемое тепло идет на корпус реактора.
Выделяемое тепло и энергия | |||||
---|---|---|---|---|---|
Количество соседних активных элементов | Урановый ТВЭЛ | Спаренный урановый ТВЭЛ | Счетверённый урановый ТВЭЛ | ||
0 | 5 еЭ/т, 4 еТ/с | 20 еЭ/т, 24 еТ/с | 60 еЭ/т, 96 еТ/с | ||
1 | 10 еЭ/т, 12 еТ/с | 30 еЭ/т, 48 еТ/с | 80 еЭ/т, 160 еТ/с | ||
2 | 15 еЭ/т, 24 еТ/с | 40 еЭ/т, 80 еТ/с | 100 еЭ/т, 240 еТ/с | ||
3 | 20 еЭ/т, 40 еТ/с | 50 еЭ/т, 120 еТ/с | 120 еЭ/т, 336 еТ/с | ||
4 | 25 еЭ/т, 60 еТ/с | 60 еЭ/т, 168 еТ/с | 140 еЭ/т, 448 еТ/с | ||
Условные обозначения: еЭ/т — единица энергии за такт (в секунде 20 тактов) |
Рассмотрим пример: в активной зоне реактора в соседних ячейках находятся спаренный и счетверённый твэлы. Спаренный ТВЭЛ будет выделять 30 еЭ/т, 48 еТ/с; счетверённый ТВЭЛ — 80 еЭ/т, 160 еТ/с. Итого реактор будет генерировать энергию напряжением 110 (будет достаточно золотого провода), 2200 единиц энергии в секунду и греться на 208 единиц тепла в секунду без учета охлаждения.
Отныне ядерный реактор отдаёт 50 % энергии в «энергетическом режиме» и 100 % в «жидкостном режиме».
Каждый одиночный урановый ТВЭЛ выделяет тепло и 200 еЭ каждую секунду. Количество выделяемого тепла зависит от того, насколько урановый ТВЭЛ окружён охлаждающими элементами.
Количество охлаждающих элементов | Выделяемое тепло (еТ) (еТ-единица температуры) |
---|---|
4 | 4: по 1 на каждый охлаждающий элемент |
3 | 6: по 2 на каждый охлаждающий элемент |
2 | 8: по 4 на каждый охлаждающий элемент |
1 | 10: все на единственный охлаждающий элемент |
0 | 10: все на корпус ядерного реактора |
За каждый урановый ТВЭЛ, помещённый впритык к данному, будет выделяться такое же количество дополнительного тепла и энергии.
За каждый обеднённый ТВЭЛ, помещённый впритык к данному, будет выделяться такое же количество тепла, но не энергии.
Кроме того, обеднённый ТВЭЛ и исчерпанный ТВЭЛ выделяют на корпус по 1 еТ каждую секунду.
Для охлаждения реактора служит целый ряд различных компонентов, запасающих, передающих и рассеивающих тепло во внешнее пространство из реактора.
Теплоотводы (кроме теплоотвода компонентов) являются нагреваемыми элементами, способные каждую секунду уменьшать свою теплоту на определенную величину вплоть до нуля. Ограничения на передачу тепла от соседних элементов отсутствуют. Учитывая, что активные элементы в первую очередь равномерно передают тепло нагреваемым элементам, а затем остаток корпусу реактора, стоящий рядом с таким элементом теплоотвод будет сдерживать передачу тепла корпусу до тех пор, пока не сгорит. Если теплоотвод способен обмениваться теплом с корпусом, то сначала он принимает определенное количество теплоты от корпуса на себя (из-за чего может сгореть) и только затем охлаждается. Компонентный теплоотвод принципиально отличается от других. Он не является нагреваемым элементом и, соответственно, не может сгореть, но каждую секунду охлаждает все соседние нагреваемые элементы на 4 еТ. Потому нахождение его рядом с активным элементом бессмысленно.
В версии IC2 2.8.197 вероятно имеется неприметный баг, связанный с передачей тепла в момент сгорания теплоотвода. Вероятно предполагалось, что при сгорании теплоотвод возвращает обратно часть невместившегося тепла плюс 1 еТ элементу, который его сжег. Но в коде производится возврат части тепла с обратным знаком плюс 1 еТ, т.е. как будто теплоотвод перед сгоранием не только рассеял всё принятое тепло, но и плюс долю невместившегося тепла за вычетом единицы. Из-за этого в момент сгорания теплоотвод рассеивает всё принятое им тепло от элемента или корпуса. Вообще говоря, почти для всех нагреваемых элементов (кроме конденсаторов) используется один и тот же алгоритм обработки нагрева, по этому данное явление присуще для всех сгораемых компонентов.
Элемент | Охлаждение | Обмен с корпусом | Обмен со смежными | Теплоемкость |
---|---|---|---|---|
Теплоотвод (англ. Heat Vent) | ||||
6 | n/a | n/a | 1000 | |
Стандартная версия охлаждает только себя на 6 eT. | ||||
Реакторный теплоотвод (англ. Reactor Heat Vent) | ||||
5 | 5 | n/a | 1000 | |
Получает 5 eT от реактора и охлаждается на 5 eT. Получается, что работает вне зависимости от своего местоположения, и может сгореть, если его нагревают и корпус постоянно горячий. | ||||
Разогнанный теплоотвод (англ. Overclocked Heat Vent) | ||||
20 | 36 | n/a | 1000 | |
Получает 36 еТ от реактора и охлаждает сам себя только на 20 еТ. Получается, что даже если его дополнительно не нагревают, при постоянно горячем корпусе, его необходимо охлаждать на 16 каждую секунду. | ||||
Улучшенный теплоотвод (англ. Advanced Heat Vent) | ||||
12 | n/a | n/a | 1000 | |
Улучшенная версия простого теплоотвода охлаждается на 12 еТ. | ||||
Компонентный теплоотвод (англ. Component Heat Vent) | ||||
4 * (0-4) | n/a | n/a | n/a | |
Принципиально отличается от предыдущих. Не может принимать тепло сам, но охлаждает четыре близлежащих охладительных элемента на 4 еТ. |
Данные компоненты в первую очередь служат для балансировки тепла между компонентами. Отличаются от предыдущих тем, что не всегда передают максимальное возможное для них количество тепла. Они балансируют тепло между собой, корпусом и соседними компонентами так, чтобы относительный нагрев их всех был равен. При этом сами не уменьшают общее количество тепла.
Элемент | Охлаждение | Обмен с корпусом | Обмен со смежными | Теплоемкость |
---|---|---|---|---|
Теплообменник (англ. Heat Exchanger) | ||||
n/a | 4 | 12 | 2500 | |
Компонентный теплообменник (англ. Component Heat Exchanger) | ||||
n/a | n/a | 24 | 5000 | |
Реакторный теплообменник (англ. Core Heat Exchanger) | ||||
n/a | 72 | n/a | 5000 | |
Улучшенный теплообменник (англ. Advanced Heat Exchanger) | ||||
n/a | 8 | 24 | 10000 | |
Данные компоненты активной зоны реактора служат только для хранения тепла. Они не транспортируют тепло сами и не уменьшают его. Удобно использовать в реакторах с циклическим режимом работы и остывания. Охлаждающие капсулы могут как нагреваться, так и охлаждаться с помощью соседних элементов. При превышении заложенной теплоёмкости в них - сгорают. Конденсаторы способны только накапливать тепло и не спорсобны охлаждаться как капсулы, но они не сгорают при достижении максимальной величины теплоты. Конденсаторы можно быстро остудить используя красную пыль или лазурит.
Элемент | Теплоемкость |
---|---|
Охлаждающий стержень 10к (англ. 10k Coolant Cell) | |
10 000 | |
Охлаждающий стержень 30к (англ. 30К Coolant Cell) | |
30 000 | |
Охлаждающий стержень 60к (англ. 60К Coolant Cell) | |
60 000 | |
Красный конденсатор (англ. RSH-Condensator) | |
20 000 | |
Поместив перегретый конденсатор в сетку крафта вместе с пылью редстоуна можно восполнить его запас тепла на 10000 еТ. Таким образом для полного восстановления конденсатора нужно две пыли. | |
Лазуритовый конденсатор (англ. LZH-Condensator) | |
100 000 | |
Восполняется не только редстоуном (5000 еТ), но ещё и лазуритом на 40000 еТ. |
Дополнительно
Прочность корпуса характеризуется тем, сколько он может хранить тепла. Его изначальная ёмкость составляет 10 000 еТ.
Она увеличивается на 1 000 еТ за каждую реакторную камеру и на 100 еТ за каждую термопластину в активной зоне. (до версии 1.106)
Влияние ядерного реактора в зависимости от % нагрева от максимального.
% нагрева | Эффект |
---|---|
40 % | Воспламеняющиеся блоки в кубе 5x5x5 имеют шанс загореться. |
50 % | Блоки воды (источник и течение) в кубе 5x5x5 испаряются. |
70 % | Игрок и мобы в кубе 7x7x7 (вместо 3x3x3) получают урон от радиации. |
85 % | Блоки в кубе 5x5x5 имеют шанс загореться или превратиться в лаву (только течение). |
100 % | Взрыв реактора |
Также на прочность корпуса влияет его обшивка. К сожалению каждый компонент обшивки реактора уменьшает его внутреннюю рабочую зону. Местоположение в ней значения не имеет.
Обшивка увеличивает теплоемкость корпуса реактора и уменьшает эффект при его взрыве.
Элемент | Теплоемкость реактора | Эффект взрыва |
---|---|---|
Обшивка реактора (англ. Reactor Plating) | ||
+1000 | -5 % | |
Сдерживающая реакторная обшивочная пластина (англ. Containment Reactor Plating) | ||
+500 | -10 % | |
Теплоёмкая реакторная обшивочная пластина (англ. Heat-Capacity Reactor Plating) | ||
+1700 | -1 % | |
Видеоролики: https://youtu.be/Q97iiabI5tA ; https://youtu.be/TsZJPINvs50
Ядерные реакторы имеют свою классификацию: МК1, МК2, МК3, МК4 и МК5. Типы определяются по выделению тепла и энергии, а также по некоторым другим аспектам. МК1 — самый безопасный, но вырабатывает меньше всего энергии. МК5 вырабатывает больше всего энергии при наибольшей вероятности взрыва.
Самый безопасный тип реактора, который совершенно не нагревается, и в то же время производит меньше всего энергии. Подразделяется на два подтипа: МК1А — тот, который соблюдает условия класса вне зависимости от окружающей среды и МК1Б — тот, который требует пассивного охлаждения, чтобы соблюдать стандарты класса 1.
Самый оптимальный вид реактора, который при работе на полной мощности не нагревается более, чем на 8500 еТ за цикл (время, за которое ТВЭЛ успевает полностью разрядится или 10000 секунд). Таким образом, это оптимальный компромисс тепла/энергии. Для таких типов реакторов также есть отдельная классификация МК2x, где х — это количество циклов, которое реактор будет работать без критического перегрева. Число может быть от 1 (один цикл) до E (16 циклов и больше). MK2-E является эталоном среди всех ядерных реакторов, поскольку является практически вечным. (То есть, до окончания 16 цикла реактор успеет охладится до 0 еТ)
Реактор, который может работать по крайней мере 1/10 полного цикла без испарения воды/плавления блоков. Более мощный, чем МК1 и МК2, но требует дополнительного присмотра, ведь за некоторое время температура может достигнуть критического уровня.
Реактор, который может работать по крайней мере 1/10 полного цикла без взрывов. Наиболее мощный из работоспособных видов Ядерных Реакторов, который требует наибольшего внимания. Требует постоянного присмотра. За первый раз издаёт приблизительно от 200 000 до 1 000 000 еЭ.
Ядерные реакторы 5-ого класса неработоспособны, в основном используются для доказательства того факта, что они взрываются. Хотя возможно сделать и работоспособный реактор такого класса, однако смысла в этом никакого нет.
Даже несмотря на то, что реакторы и так имеют целых 5 классов, реакторы иногда подразделяют ещё на несколько незначительных, однако немаловажных подклассов вида охлаждения, эффективности и производительности.
-SUC (single use coolants — одноразовое использование охлаждающих элементов)
Эффективность — это среднее число импульсов, производимых твэлами. Грубо говоря, это количество миллионов энергии, получаемой в результате работы реактора, поделённое на число твэлов. Но в случае схем обогатителей часть импульсов расходуется на обогащение, и в этом случае эффективность не совсем соответствует полученной энергии и будет выше.
Сдвоенные и счетверённые твэлы обладают большей базовой эффективностью по сравнению с одиночными. Сами по себе одиночные твэлы производят один импульс, сдвоенные — два, счетверённые — три. Если в одной из четырёх соседних клеток будет находиться другой ТВЭЛ, обеднённый ТВЭЛ или нейтронный отражатель, то число импульсов увеличивается на единицу, то есть максимум ещё на 4. Из вышесказанного становится понятно, что эффективность не может быть меньше 1 или больше 7.
Маркировка | Значение эффективности |
---|---|
EE | =1 |
ED | >1 и <2 |
EC | ≥2 и <3 |
EB | ≥3 и <4 |
EA | ≥4 и <5 |
EA+ | ≥5 и <6 |
EA++ | ≥6 и <7 |
EA* | =7 |
На схемах реакторов вы можете иногда увидеть дополнительные буквы, аббревиатуры или другие символы. Эти символы хоть и используются (например, раньше подкласс -SUC официально не был зарегистрирован), но большой популярности они не имеют. Поэтому вы можете назвать свой реактор хоть Mk9000-2 EA^ dzhigurda, однако такой вид реактора просто не поймут и сочтут это за шутку.
Все мы знаем, что реактор нагревается, и может внезапно произойти взрыв. И нам приходится то выключать, то включать его. Далее написано, как можно защитить свой дом, а также как максимально использовать реактор, который никогда не взорвётся. При этом у вас должно быть уже поставлены 6 реакторных камер.
Ниже описано строительство реактора с повышенной безопасностью. Нам понадобится зона площадью чуть больше, чем 10 на 10.
В качестве провода лучше использовать, либо стекловолоконные провода, либо высоковольтный провод с тройной изоляцией, для поддержки напряжения более 512 еЭ/т. Так же соответствующие понижающие трансформаторы.
Самый производительный реактор, и, как следствие, самый дорогой. 1 счетверенный ТВЭЛ дает 28 млн энергии
Выходная мощность: 140 еЭ/т
Всего еЭ: 28 000 000 еЭ
Затраты ресурсов: 60 золота, 214 меди, 119 олова и 161 железа (не учитывая топливные стержни)
Время генерации: Полный цикл
Время перезарядки: Не требуется
Максимум циклов: Бесконечное число
Общее время: 2 ч. 46 мин. 40 сек.
Многим известно, что обновления вносят изменения. Одним из этих обновлений были внесены новые твэлы — сдвоенный и счетверённый. Схема, которая находится выше, не подходит к этим твэлам. Ниже предоставлено подробное описание изготовления довольно опасного, но эффективного реактора. Для этого к IndustrialCraft 2 нужен Nuclear Control. Данный реактор заполнил MFSU и MFE примерно за 30 минут реального времени. К сожалению, это реактор класса МК4. Но он выполнил свою задачу нагревшись до 6500 еТ. Рекомендуется поставить на температурном датчике 6500 и подключить к датчику сигнализацию и экстренную систему отключения. Если тревога орёт дольше двух минут, то лучше выключить реактор вручную. Постройка такая же, как и сверху. Изменено лишь расположение компонентов.
Выходная мощность: 360 еЭ/т
Всего еЭ: 72 000 000 еЭ
Время генерации: 10 мин. 26 сек.
Время перезарядки: Невозможно
Максимум циклов: 6,26 % цикла
Общее время: Никогда
Самое главное в таком реакторе — не дать ему взорваться!
Достаточно эффективный но дорогостоящий вид реактора. За минуту вырабатывает 720 000 еТ и конденсаторы нагреваются на 27/100, следовательно, без охлаждения конденсаторов реактор выдержит 3 минутных цикла, а 4-й почти наверняка взорвёт его. Возможна установка обеднённых твэлов для обогащения. Рекомендуется подключение реактора к таймеру и заключение реактора в «саркофаг» из укреплённого камня. Из-за высокого выходного напряжения (600 еЭ/т) необходимы высоковольтные провода и трансформатор ВН.
Выходная мощность: 600 еЭ/т
Всего еЭ: 120 000 000 еЭ
Время генерации: Полный цикл
Время перезарядки: Не требуется
Максимум циклов: Бесконечное число
Общее время: 2 ч. 46 мин. 40 сек.
Элементы не нагреваются вообще, работают 6 счетверённых твэлов.
Выходная мощность: 360 еЭ/т
Всего еЭ: 72 000 000 еЭ
Время генерации: Полный цикл
Время перезарядки: Не требуется
Максимум циклов: Бесконечное число
Общее время: 2 ч. 46 мин. 40 сек.
Маломощный, но экономичный к сырью и дешёвый в постройке. Требует отражателей нейтронов.
Выходная мощность: 60 еЭ/т
Всего еЭ: 12 000 000 еЭ
Время генерации: Полный цикл
Время перезарядки: Не требуется
Максимум циклов: Бесконечное число
Общее время: 2 ч. 46 мин. 40 сек.
Средней мощности но относительно дешёвый и максимально эффективный. Требует отражателей нейтронов.
Выходная мощность: 140 еЭ/т
Всего еЭ: 28 000 000 еЭ
Время генерации: Полный цикл
Время перезарядки: Не требуется
Максимум циклов: Бесконечное число
Общее время: 2 ч. 46 мин. 40 сек.
Компактный и дешёвый к постройке обогатитель урана. Время безопасной работы — 2 минуты 20 секунд, после чего рекомендуется чинить лазуритовые конденсаторы (ремонт одного — 2 лазурита + 1 редстоун), из-за чего придется постоянно следить за реактором. Также из-за неравномерного обогащения сильно обогащенные стержни рекомендуется менять местами со слабо обогащенными. В то же время может выдать за цикл 48 000 000 еЭ.
Выходная мощность: 240 еЭ/т
Всего еЭ: 48 000 000 еЭ
Время генерации: Полный цикл
Время перезарядки: Не требуется
Максимум циклов: Бесконечное число
Общее время: 2 ч. 46 мин. 40 сек.
«Комнатный» реактор. Имеет невысокую мощность, зато очень дешёв и абсолютно безопасен — весь присмотр за реактором сводится к замене стержней, поскольку охлаждение вентиляцией превышает теплогенерацию в 2 раза. Лучше всего поставить его вплотную к МФЭ/МФСУ и настроить их на подачу сигнала редстоуна при частичной зарядке (Emit if partially filled), таким образом реактор будет автоматически заполнять энергохранитель и отключаться при его заполнении. Для крафта всех компонентов потребуется 162 меди, 117 железа, 50 свинца, 48 золота, 15 олова, 8 редстоуна, 7 резины, 2 единицы светопыли и лазурита, а также 9 единиц урановой руды. За цикл выдает 32 млн еЭ.
Выходная мощность: 80 еЭ/т
Всего еЭ: 32 000 000 еЭ
Время генерации: Полный цикл
Время перезарядки: Не требуется
Максимум циклов: Бесконечное число
Общее время: около 5 ч. 33 мин. 00 сек.
Реакторы классов MK3 и MK4 вырабатывают действительно много энергии в короткие сроки, но они имеют тенденцию взрываться без присмотра. Но с помощью таймера, можно заставить даже эти капризные реакторы работать без критического перегрева и позволить вам отлучится, например, чтобы накопать песочка для вашей фермы кактусов. Вот три примера таймеров:
Базовое охлаждение самого реактора равно 1. Далее проверяется область 3х3х3 вокруг реактора. Каждая камера реактора добавляет к охлаждению 2. Блок с водой (источником или течением) добавляет 1. Блок с лавой (источником или течением) уменьшает на 3. Блоки с воздухом и огнем считаются отдельно. Они добавляют к охлаждению (число блоков воздуха-2×число блоков с огнем)/4 (если результат деления не целое число, то дробная часть отбрасывается). Если суммарное охлаждение меньше 0, то оно считается равным 0.
То есть корпус реактора не может нагреться из-за внешних факторов. В худшем случае он просто не будет охлаждаться за счёт пассивного охлаждения.
При высокой температуре реактор начинает отрицательно воздействовать на окружающую среду. Это воздействие зависит от коэффициента нагрева. Коэффициент нагрева=Текущая температура корпуса реактора/Максимальная температура, где Максимальная температура реактора=10000+1000*число камер реактора+100*число термопластин внутри реактора.
Если коэффициент нагрева:
В первую очередь охлаждается корпус реактора за счёт внешнего охлаждения. Дальше идёт проверка всех ячеек, начиная с верхнего левого угла, сначала верхняя строка слева направо, потом остальные.
Проверка ячеек:
Существуют программы, рассчитывающие эти схемы. Для более надёжных расчётов и большего понимания процесса стоит использовать их.
Возьмем к примеру такую схему с тремя урановыми стержнями.
Цифрами обозначен порядок расчёта элементов в этой схеме, и этими же цифрами будем обозначать элементы, чтобы не запутаться.
Для примера рассчитаем распределение тепла на первой и второй секундах. Будем считать, что вначале нагрев элементов отсутствует, пассивное охлаждение максимально (33 еТ), и охлаждение термопластин не будем учитывать.
Первый шаг.
На рисунке красные стрелочки показывают нагрев от урановых стержней, синие — балансировку тепла теплораспределителями, желтые — распределение энергии на корпус реактора, коричневые — итоговый нагрев элементов на данном шаге, голубые — охлаждение для охлаждающих капсул. Цифры в верхнем правом углу показывают итоговый нагрев, а для урановых стержней — время работы.
Итоговый нагрев после первого шага:
Второй шаг.
Итоговый нагрев после второго шага:
При наличии Railcraft реактор может генерировать пар. для этого нужно в строке
# Enable steam-outputting reactors if Railcraft is installed B:enableSteamReactor=false
false поменять на true
Обзор основных безопасных схем реакторов: https://youtu.be/KUc7u5ztkik